skip to main content


Search for: All records

Creators/Authors contains: "Amram, P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Aims. We present the results of three commissioning H  I observations obtained with the MeerKAT radio telescope. These observations make up part of the preparation for the forthcoming MHONGOOSE nearby galaxy survey, which is a MeerKAT large survey project that will study the accretion of gas in galaxies and the link between gas and star formation. Methods. We used the available H  I data sets, along with ancillary data at other wavelengths, to study the morphology of the MHONGOOSE sample galaxy, ESO 302-G014, which is a nearby gas-rich dwarf galaxy. Results. We find that ESO 302-G014 has a lopsided, asymmetric outer disc with a low column density. In addition, we find a tail or filament of H  I clouds extending away from the galaxy, as well as an isolated H  I cloud some 20 kpc to the south of the galaxy. We suggest that these features indicate a minor interaction with a low-mass galaxy. Optical imaging shows a possible dwarf galaxy near the tail, but based on the current data, we cannot confirm any association with ESO 302-G014. Nonetheless, an interaction scenario with some kind of low-mass companion is still supported by the presence of a significant amount of molecular gas, which is almost equal to the stellar mass, and a number of prominent stellar clusters, which suggest recently triggered star formation. Conclusions. These data show that MeerKAT produces exquisite imaging data. The forthcoming full-depth survey observations of ESO 302-G014 and other sample galaxies will, therefore, offer insights into the fate of neutral gas as it moves from the intergalactic medium onto galaxies. 
    more » « less